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Digital Simulation of Counterflow Regenerator 
Two-dimensional Model by two relatively new 
Techniques 

A. I. K h a n d w a w a l a ~ -  a n d  O.  P.  C h a w l a ~ .  

Two relatively new finite-difference explicit methods, Alternating Direction Approximation and the 
Dufort and Frankel scheme, have been compared for digital simulation of counterltow thermal 
regenerators. The methods are applied to evaluate the thermal performance of regenerators. The 
temperature histories in the solid are considered as functions of two space dimensions. The solutions 
are programmed to include the effect of gas radiation and  variable specific heats of gases. Of the 
two methods compared, the Alternating Direction Approximation is found to be simpler, easy to 
apply, and self-starting. 
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NOTATION 

see equations (14) 
heat transfer area of channel [m 2] 
flow area of a channel [m 2] 
semithickness of wall [m] 
Blot number, ha/K 
specific heat of chequer material [J/kg K] 
Fourier number 
total heat transfer coefficient [W/m 2 K] 
thermal conductivity of solid [W/m K] 
regenerator height [m] 
number of steps of integration in x-direction 
number of transfer units 
number of,steps of integration in y-direction 
perimeter of channel [m] 
number of steps of integration in time 
specific heat of fluid [J/m 3 K] 
dimensionless matrix temperature, 

T -  t~" 
t;n -- t;'. 

matrix temperature [K] 
fluid temperature [K] 
dimensionless fluid temperature, 

t --  ti' ~ 

tl. - t;'. 

volume flow rate of fluid, at NTP [m3/s] 
sides of regenerator channel [m] 
see equations (22) 
distance from channel surface in a direction 
perpendicular to fluid flow Ira] 
dimensionless distance, x/a 
see equations (13) 
distance from regenerator entrance in the 
fluid flow direction [m] 
dimensionless distance, y/L 
see equations (16) 
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Greek Symbols 
~t 
A 
P 

"[p 

f~ 

Subscripts 
i position 

j position 
k position 

Superscripts 
' refers to 
" refers to 

thermal diffusivity, K/pc [m2/s] 
reduced length, hA/VS 
density of matrix material [kg/m 3] 
regenerator thermal ratio 
time [s] 
heating or cooling period [s] 
dimensionless time, ,/Tp 
reduced time, g'¢p/a 2 

in x-direction 
in y-direction 
in time 

heating period 
cooling period 

l INTRODUCTION 

The thermal regenerator is used in many chemical and 
other industries like metal reducing and steel-making 
plants, glass-making industries, gas turbine plants, etc. 
The regenerator preheats the combustion air for the 
furnace, thereby resulting in better combustion and 
saving in fuel costs. A thermal regenerator consists of 
chequer work made of refractory bricks or ceramic 
materials. The waste gases and air, passing alternately 
through the passages in the matrix structure, exchange 
heat with the matrix material. Thus the matrix is 
alternately heated and cooled. A complete cycle com- 
prises a heating period and a cooling period. Starting 
from an initial uniform matrix temperature distribution, 
the temperature histories in the matrix and of the gases 
become periodic after a large number of cycles of 
operation, and the regenerator is said to have attained 
cyclic equilibrium. 

The prediction of these temperature histories in the 
matrix and of the gases during the heating and cooling 
periods of a regenerator operating under cyclic equi- 
librium is of practical interest. The effects of varying 
several operating and design parameters, such as chan- 
nel dimensions, wall thickness, heating and cooling 
periods, regenerator height, fluid flow rates, etc. can be 
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68 A . I .  KHANDWAWALA AND O. P. CHAWLA 

studied without requiring costly experimentation on 
actual regenerators. 

The earlier investigations on regenerators (1)-(4) have 
been carried out from a purely mathematical point of 
view, without taking the actual regenerator parameters 
into account. Moreover, most of the workers did not 
consider the heat conduction in the matrix in a direction 
perpendicular to fluid flow. Instead, they have used a 
bulk heat transfer coefficient based on mean solid tem- 
perature. This simplification, though it may give fairly 
accurate values of regenerator effectiveness in a few 
cases (2), does not give accurate results for time varia- 
tion of air and gas exit temperatures or the extreme 
solid temperatures, but these are available using the 
methods described in reference (3). Willmott (2) has 
solved the problem considering the finite thermal con- 
ductivity of the matrix in the direction perpendicular to 
heat flow. Manrique and Cardenas (5) have solved the 
same problem using the first-order finite difference tech- 
nique by taking data from actual regenerators. The latter 
authors have used the heat-transfer coefficient due to 
Kistner and Schumacher as referred in (6), which does 
not seem to have included the effect of gas radiation. 
The present work is undertaken to compare two rela- 
tively new finite difference explicit methods for regener- 
ator simulation. The methods have been used earlier to 
solve the problem of one-dimensional transient heat 
conduction through a slab (7), and have been claimed 
to be simple and unconditionally stable. One of these 
two methods, the Dufort and Frankel scheme, has 
earlier been used by the authors (8) for regenerator 
simulation in which the matrix temperature histories 
have been considered in only one dimension, i.e., parallel 
to the flow. It has been shown that the computational 
effort required by the Dufort and Frankel method is 
nearly half of that required by the Trapezoidal method 
($), though both the methods are unconditionally stable, 
and the accuracy of both of these methods is of the 
order of (Az)  2. I n  the present paper the Alternating 
Direction Approximation method and the Dufort and 
Frankel scheme are developed for the simulation of the 
thermal regenerator; considering finite thermal con- 
ductivity of the matrix in the direction perpendicular 
to flow. These two explicit methods have been selected 
for the purpose .because it is well established (9) that 
these methods require considerably less computation 
time as compared to many other methods like Crank- 
Nicolson and Mitchel-Pearce used by Willmott (2). At 
the same time, both of these methods have the accuracy 
of the order of (Az)  2 a t  each step of integration, which 
is comparable to that of the method used by Willmott 
(2). In the estimation of heat transfer coefficients, the 
effect of gas radiation is also included. For this purpose 
computer programs are prepared in the form of tables 
from graphs of emissivities of carbon dioxide and water 
vapours (10). All the necessary correction factors have 
also been incorporated in the program. The correlation 
for convective heat transfer has been taken from 
reference (11). 

2 MATHEMATICAL M O D E L  

The mathematical model consists of representing the 
regenerator by identical flue passages of rectangular 

cross-section, each of wall thickness 2a and perimeter P. 
The complicated open-basket or pigeon hole-types of 
flue passages can also be approximated by rectangular 
flue passages of equivalent hydraulic diameters, beam 
lengths, and heat transfer areas. Similarly the com- 
plicated solid shapes may also be approximated to an 
equivalent simple wall thickness a. All the assumptions 
made in the previous paper by Khandwawala and 
Chawla (12) also apply. These are: 

(1)'Zero thermal conductivity of the matrix in the y- 
direction, and finite in the x-direction. 

(2) Constant heat transfer coefficient during the heating 
or the cooling period. 

(3) Constant fluid flow rates. 
(4) Thermal properties of solid matrix invariant with 

temperature or position. 
(5) Uniform fluid temperature at any cross-section. 
(6) Within the fluid, heat conduction in the flow direc- 

tion is negligible. 
(7) Effect of fluid mass entrapped in the channel is 

negligible (see Appendix A). 

Since all the channels are identical, the centre plane 
of the wall thickness is adiabatic. For this reason, in 
the mathematical analysis, only half the thickness of 
matrix wall for a single flue passage has to be con- 
sidered. For both the schemes of solution used for this 
paper, it is not necessary to write down the diffusion 
equations of heat conduction within the matrix, since it 
will not be used here. The first step is to write the 
difference quotients for all space derivatives, so that, 
mathematically the problem appears as a system of first 
order differential equations, with time as independent 
variable. To do this, the half matrix wall thickness is 
divided into m by n equal elements, m perpendicular to 
flow direction and n in the flow direction. The sides 
of the elements are Ax and Ay, being unity in the third 
direction. Next, heat balance equations are written for 
the heat exchange between the surface element and the 
gas bulk and also for each element of the wall. The 
resulting differential equations in non-dimensional form 
(12) are as below (Appendix B): 

and 

OT; ~ n B i n  
0z* - (Ax*) 2 (T2* - TI*) + Ax* (t* - 7"1") (1) 

OTi* f~ f~ 
~ ,  - ( A x , ) 2  ( ~ * '  - ~ * )  + ~ ( ~ * ~  - ~*) 

i = 2 , 3  . . . . .  m -  1 (2) 

- ( r ? _ ,  - r . * )  ( 3 )  

An energy balance on the elementary gas volume in the 
flue section of height Ay gives: 

0t* 
- A(T~' - t*)  (4) 

0y* 

In the above eqs (1) to (4), the suffix on T refers to 
the location of the element in the x-direction. 
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The conditions of cyclic equilibrium and flow reversal 
for counterflow regenerator are: 

T*'(x*, y*, 1) = T*"(x*, 1 - y*, 0) (5a) 

T*"(x*, y*, 1) = T*'(x*, 1 - y*, O) (5b) 

In eqs (5a) and (5b), the third dimension in the no- 
menclature T* is the dimensionless time 3*. 

The conditions of constant fluid inlet temperatures 
can be expressed as: 

t*'(0, : 3  = 1 t 

t*"(0, z*") = 0t (6) 

3 NUMERICAL METHODS 

3.1 Alternating Direct ion Approximation (Appendix C): 

The solutions to eqs (1) to (3) using Alternating Direc- 
tion Approximation are given by the following set of 
equations, fo r j  = 1, 2, 3 . . . . .  n: 

1. At odd time steps, (k = 2, 4, 6, ...): 

* =YIT'~.j.  +Y2 * Tt , j ,k+t k tj, k+ 1 + Y3T*,Lk (7) 

* = T.*. Ys(T*- + * Ti, j,k+l Y* ,,J,k + 1. j .k+l  Ti+l,j ,k)  

i = 2 , 3  . . . . .  m - 1  (8) 

and 

T*m.j.k+, = Y6T*,j,k + YsT*- t , j , k+,  (9) 

2. At even time steps, (k = 1, 3, 5 . . . .  ): 

T*m,j,k+l. = YTT*m.j.k + A tT*_ t , j ,  k (10) 

* T.*. Ti, i,k+1 = Y,* ,,j,k + Ys(T*-I,j,k -: Ti+1,j,k+l)* 
i=m-l,m-2 ..... 3,2 (II) 

and 

T~,Lk+t = YsT'~,i,k + Yot~k + YsT~,Lk+t (12) 

In the ebove equations, 

1 - AI A2 
Y l - - -  Y 2 - - -  

1 + A2 1 + A2 

A t 1 - A1 
Y 3 = - -  Y 4 = - -  

I + A 2  I + A I  

A t  1 Y s = - -  r ~ - - -  
1 + A~ 1 + A 1 (13) 

1 -- A 2 
Y T =  l - A t  Ys = -  

I + A t  

and 

where 

A2 
Y g - - -  

I + A 1  

For the integration of eq (4), the trapezoidal formula 
may be used, giving 

tj*,k+l = Z l t * - l , k + l  + Z2(T*.I.k+I + * Tl,j-l,k+l) 

j = 2, 3 . . . . .  n (15) 

where 

Z,  = (1 - 0"5AAy*)/(1 + 0"5AAy*) 

0.5AAy* (16a) 
Z 2 - 

1 + 0.5AAy* 

The solution (15) cannot be used to calculate the 
gas temperatures at odd time steps, as it requires prior 
knowledge of matrix temperatures, T~' J, k+ X, at the same 
time step. For this purpose, eqs (7) to (12) and (15) 
are combined to give: 

t 'k+1 Z 3 t j - l , k + l  + = Z4TI . j_ I .k+ 1 

where 

* Z6T~, (17) + Z5Tl , j , k  + j,k 

Z1 Z 2 
Z3 - Z4 - 

1 - Z2 1:2 1 - Z2 Y2 

Z2 I:1 Z2 I:3 
Z 5 - -  Z 6 - -  

1 - Z2 Y2 1 -- Z 2 Y2 

(16b) 

The scheme of solution by this method is shown in 
flow chart, Fig. l(a). 

3.2 Dufort  and Frankel  Scheme  (Appendix C). 

The solutions of eqs (1) to (4) using the Dufort and 
Frankel scheme are given by the next set of equations 
(18) to (20) f o r j = l ,  2 . . . . .  n , k = 2 , 3  . . . . .  r - 1  and 
by eq. (21). 

T* , j , k+ t=XtT~ , j , k -1  + X 2 T * j , k + X 3 t j * k  (18) 

r*i ,k+t  = X4 T*j ,k- ,  + Xs(T*+,,j.k + T*-t.j,k) 

i----2,3 . . . . .  m - - 1  (19) 

T* • = X 6 T* (20) m.~.k+l ra. L k - t  + X7 T*m-l.j.k 

t*+t,k = Xst*- l ,k  + X9 Tl,j,k* 

k = l ,  2 . . . . .  r ; j = 2 ,  3 . . . .  , n - i  (21) 

where 

1 - A 1 - A 2 2A t 
X t  = X2 = 

1 + A I  + A 2  1 + AI + A 2  

2A 2 1 - 2At 
X3 - X4 - - -  

I + A t + A 2  l + 2 A  t 

2A1 1 - At  
X5 = 1 +  2A- - - - -~  X6  = 1 --I- A - - - - ~  (22) 

2A1 1 - Ay*A 
X7 - - -  Xs - 

1 + AI 1 + Ay*A 

A¢*f~ Az*i~Bi 2Ay*A 
AI  = :Ax,~2 [ ! and A2---- Ax---------- ~ -  (14) X 9 --  

1 + Ay*A 
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l Calculate gas tempi, at time 
step, k= 1 along regenerator 
height Eq. (15) 

i ' I (i) Matrix ~lemp. for the inner- 
' moat element Eq. (10) 

I (ii) Matrix temps, for the inner 

I Compute: (i) Matrix temp. for surface 
element, Eq. (7) 

(ii) Matrix temps, for the inner 
elements, Eq. (8) 

(iii) Matrix temp. for innermost 
element, Eq. (9) 

NO, 

elements Eq. (11) 
(iii) Matrix temp. for the surface 

element Eq. (12) 

YES ~ NO ,_o@" 
Continue 

Fig. la. Flow chart for Alternating Direction Approximation 
method 

At time step k = 1, compute : 
(i) Gas temp. at height step 2, Eq, (15) 
(ii) Gas temps, at height steps 3, 4, ... n, Eq. (21) 

i 

Calculate matrix temps. 
(i) For surface element, Eq. (18) 
(ii) For inner elements, Eq. (19) 
(iii) For innermost element, Eq. 

(20) 

Calculate matrix temps. 
(i) For surface element, I:q. (7 
(ii) For inner elements, Eq. (8) 

(iii) For innermost element. Eq. 
(s) 

i 1 

YES m ~ N ~ O  0 q 4l 

i Calculate gas temp.. Eq. (21)J 

Continue 

YES 

i f Calculate gas 
Itemp. Eq. (17) i 

Fig.  l b .  Flow chart for Dufort and Frankel scheme 

The solutions (18) to (21) are multi-step, i.e., eqs (18) 
to (20) cannot be used for k = 1 (time step 2), and 
eq. (21) cannot be used at height stepj equal to 2. Hence 
other methods have to be used for starting the solution. 
In the present work eqs (7) to (9), (15), and (17) are 
used for starting the solution. The scheme is shown in 
the flow chart, Fig. lb. 

The complete step-by-step simulation procedure for 
either scheme is shown in the flow chart Fig. 2. To 
start with, an arbitrary but well chosen temperature 
distribution is assumed at the beginning of the heating 
period. Values of air and gas specific heats, and the 
overall heat transfer coefficients for both the periods are 
also suitably assumed. The matrix and fluid tempera- 
tures during heating and cooling periods for the first 
iteration are calculated following the scheme shown in 
Figs. 1 and 2. At the end of the first iteration, the time 
average exit temperatures of the air and the hot gases, 
i~'~i, and/'exit, are calculated. The fluid specific heats and 

@ 
nt,a,ize 'l 
(i) Matrix temperature distribution at the begin- I 

ning of heating period I 
(ii) Values of h for heating and cooling pds. I 

ICalculate the coefficients in all the solution! 

l equations, for heating and cooling periods 

t 

I Calculate the matrix and hot gas temp. distribution 
in heating period, Fig. 1 

t 
I Apply reversal condition, Eq. (5a) I 

I 

Calculate the matrix and air temp. distribution in I 
cooling period, Fig. 1 I 

t 

I 
Calculate 
(i) Time mean exit air and gas temps. 

(ii) Cooling period thermal ratio, E" 

NO Does E" 
t w o  successive 
far by <0.0001' 

Write results • 

IApply reversal condition Eq. (sb) I 

I 
I Calculate heat transfer coefficients for heating and I 
I cooling periods I 

Fig. 2. Regenerator simulation 
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the heat transfer coefficients required for calculating the 
coefficients in all the equations in the next iteration are 
then based on t~can for the heating period and t~ca. for 
the cooling period, where, 

r I -t t 
t . . . .  = I ( t .x i t  + t i . )  

and 

t " ean  = 11'= . . . .  ) I / t e x i t  + t in 

The surface temperature for both the periods is assumed 
as the arithmetic mean of t~,an and t~,~,. 

The iteration is terminated when both the following 
criteria are satisfied: 

(i) the cooling period thermal ratios, e", between two 
successive cycles differ by less than 0.0001 

(ii) the 'improved convergence criterion' 
I t, ,, ~2 I 
~"---ea'z-U- I < 0.0001 

~. - 2 ~ . _  1 + ~"_ 2[ 

is satisfied. 

Here e~ is the cooling period thermal ratio in the 
nth cycle of iteration and e" is defined as 

-It tt 
~;r, = /exit - -  tin 

t'in - -  t; '  n 

The improved convergence criterion has been pro- 
posed by Willmott and Kulakowski (13) to minimize 
the danger of mistaking slow convergence for cyclic 
equilibrium. This improved criterion has not been 
shown in the flow chart, Fig. 2, although it was 
incorporated in the computer programs run for the 
present paper. As a further check on convergence, heat 
balances for some of the computed examples are pre- 
sented in Appendix D. 

Gas composition, 
1 atm): 

4 R E S U L T S  A N D  D I S C U S S I O N  

To demonstrate the usefulness of the two methods, and 
to compare them, a regenerator with the following data 
has been considered: 

Hot gas inlet temperature: 1723 K 
Air inlet temperature: 323 K 
Thermal conductivity of solid: 1-581 W/m K 
Thermal diffusivity of solid: 4 x 10- 7 m 2 / s  

Emissivity of surface: 0-8 
Heating and cooling periods, each: 1200 s 
Ratio of gas to air flow: 1.045 

percentage by volume (pressure 

CO 2 = 12-33 
H20 = 11.36 

N 2 = 74.51 
02 = 1.80 

The channel dimensions are: 

I411 = 0.1524 m 
W2 = 0-2286 m 

a = 0"0381 m 

Regenerator heights varying from 2.5 m up to 9 m are 
considered for this example, keeping the flow rate of 

air fixed at 0~1527 mS/s. Next for the regenerator 
height of 5.5 m, the flow rates are changed to 90 per 
cent, 120 per cent, and 140 per cent of the above value. 
Thus it has been possible to cover a wide range of 
regenerator thermal ratios. 

The programs were run on ROBOTRON ES1040 com- 
puter, taking m = 6, n = 12, and r = 21, for both the 
methods. The program size and computer core required 
for  both the methods were more or less the same. The 
thermal ratios calculated by the two methods for dif- 
ferent regenerator heights and flow rates are compared 
in Table la. 

In Table lb the air preheat temperatures at the 
beginning and at the end of the cooling period are listed. 
Table lb also depicts the maximum matrix temperature 
(which occurs at the surface at inlet in the end of the 
heating period) and the minimum matrix temperature 
(which occurs at the surface at inlet in the end of the 
cooling period). 

From Table la it is evident that the cooling period 
thermal ratios calculated by Alternating Direction 
approximation agree within 0.1 per cent with the cor- 
responding thermal ratios calculated by the Dufort and 
Frankel scheme. The heating period thermal ratios are 
close up to about 1 per cent. 

From Table lb it is observed that the preheat tem- 
peratures and the matrix extreme temperatures cal- 
culated by both the methods are in very close agree- 
ment. 

The number of cycles to equilibrium by both the 
methods were exactly the same in each case. The com- 
puter time required by Alternating Direction Approxim- 
ation for the data of St. No. 1, Table 1, was 31 seconds, 
whereas by the Dufort and Frankel scheme, it was 
33 seconds. For the data of Sr. No. 4 Table 1, the 
respective times by both the methods were 39 seconds 
and 42 seconds. The computation time for all other 
examples worked out by both the methods were in 
similar proportion. 

In another set of examples, the channel dimensions 
are changed to W1 =0.165 m, W 2 =0.171 m and 
a = 0-0317 m, keeping all other data the same. Again 
for varying flow rates and regenerator heights, the 
results are displayed in Tables 2a and 2b. Here again 
a close agreement between the results is found by both 
the methods. 

These results are also in agreement with the very 
limited experimental data available from actual regener- 
ators operating in industry. 

Both the methods used in the present work are found 
to be stable for any step size. Results from a non-linear 
example worked out by the authors suggest that these 
methods are stable in non-linear cases as well. Any one 
of the two methods can be used for predicting the 
thermal performance of a regenerator using a two- 
dimensional model. But it can be seen that in the 
Alternating Direction Method fewer coefficients are 
required to be calculated. So the amount of computa- 
tion in this method is slightly less than in the other 
method. For the same reason, this method is expected 
to need, relatively, still less computer time for the non- 
linear problem. This is in relation to the fact that in the 
non-linear problem the coefficients are to be calculated 
at each step of integration. 
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72 A. I. KHANDWAWALA AND O. P. CHAWLA 

Table I :  Comparison o f  two methods for  W1 = 0"1524 m, W2 = 0.2286 m, and a = 0.0381 m 

(a) Thermal ratios 

St. 
No. 

g H 

m3/s  

0"01527 
0"01527 
0"01527 
0"01527 
0"01527 
0"01527 
0"01382 
0-01833 
0"02138 

L 
m 

2.5 
3"5 
4.5 
5.5 
7.5 
9.0 
5.5 
5.5 
5.5 

Alternating direction 

,gl 

0.2476 
0.3167 
0.3734 
0.4233 
0.4978 
0.5512 
0.4311 
0-4078 
0"4039 

0.3089 
0.3926 
0.4604 
0.5154 
0.6012 
0.6473 
0.5250 
0.4994 
0.4850 

Dufort and Frankel 

0"2442 
0"3132 
0"3698 
0"4192 
0"4926 
0"5445 
0'4269 
0'4036 
0"3987 

0"3085 
0"3923 
0-4603 
0"5156 
0"6023 
0"6492 
0-5254 
0"4994 
0-4851 

Sr. 
No. 

(b) Air and extreme solid tern ~eratures (dimensionless) 

Alternating direction Dufort and Frankel 

Preheat temperature Solid temperature Solid temperature 

Beginning 
of period 

0.3265 
0.4134 
0.4829 
0.5386 
0.6240 
0.6691 
0-5465 
0.5258 
0.5145 

End of 
period 

0.2998 
0.3818 
0-4487 
0-5034 
0.5892 
0.6358 
0-5138 
0.4858 
0.4699 

Max. 

0-9178 
0.9256 
0.9321 
0-9375 
0.9741 
0.9526 
0-9414 
0.9315 
0.9281 

Min. 

0.5976 
0.5394 
0"4922 
0'4498 
0'3895 
0.3404 
0.4506 
0.4507 
0.4324 

Preheat temperature 

Beginning End of 
of period period 

0'3275 0'2998 
0"4148 0"3820 
0-4846 0-4491 
0'5408 0'5041 
0"6270 0-5908 
0"6729 0"6382 
0.5487 0-5147 
0'5279 0'4863 
0'5170 0'4706 

Max. 

0.9200 
0.9275 
0.9339 
0.9392 
0-9487 
0.9542 
0.9430 
0.9334 
0.9302 

Min. 

0.5976 
0"5395 
0'4924 
0"4506 
0.3914 
0-3433 
0"4515 
0.4513 
0-4322 

Table 2: Comparison o f  two methods for  W 1 = 0.165 m, 1412 = 0.171 m, and a = 0.0317 m 
(a) Thermal ratios 

St. 
No. 

V" L 
m3/s  m 

0"01142 3-5 
0"01142 5"5 
0"01142 7'5 
0'01142 9"0 
0"01028 5"5 
0"01317 5"5 
0"01599 5"5 

Alternating direction Dufort and Frankel 

0-3451 
0-4520 
0.5223 
0-5565 
0-4367 
0-4386 
0.4292 

0.4270 
0.5521 
0"6369 
0.6850 
0-5605 
0.5354 
0'5209 

0"3402 
0'4467 
0'5156 
0'5488 
0.4574 
0.4327 
0'4228 

0.4263 
0.5520 
0.6379 
0"6865 
0'5610 
0'5351 
0-5204 

(b) Air and extreme solid tern ~eratures (dimensionless) 

Alternating direction Dufort and Frankel 

Preheat temperature Solid temperature Solid temperature 

Sr. Beginning End of 
No. of period period Max. Min. Max. Min. 

0-4481 
0-5747 
0-6583 
0.7049 
0.5813 
0"5612 
0.5497 

0.4160 
0.5403 
0'6256 
0.6745 
0.5495 
0.5220 
0.5060 

0.9227 
0"9411 
0.9492 
0.9546 
0.9452 
0"9336 
0.9281 

0-5173 
0-4285 
0.3708 
0.3448 
0.4250 
0.4261 
0.4198 

Preheat temperature 

Beginning End of 
of period period 

0.4500 0.4161 
0-5774 0.5411 
0'6620 0"6274 
0.7090 0'6768 
0.5845 0-5508 
0.5462 0.5227 
0-5529 0-5066 

0"9303 
0'9433 
0-9513 
0"9566 
0.9463 
0"9363 
0"9310 

0-5170 
0"4291 
0'3727 
0"3475 
0"4259 
0-4267 
0-4200 
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5 CONCLUSION 

The results obtained by the two methods are quite close, 
and compare favourably with very limited data available 
from experiments on actual regenerators. The effects of 
varying regenerator parameters obtained in these in- 
vestigations are similar to those obtained by Manrique 
and Cardenas (5). These methods are simpler to apply 
and can be used with any type of boundary conditions, 
and variable properties of solid and fluids. The Alternat- 
ing Direction Approximation is the simpler of the two 
methods, as it is self-starting, and it requires relatively 
less computer time. 

term to first term on the right-hand side of eq. (1) is 
therefore: 

R =  
@2286 x 0.1524 x 0.1917 

= 2.53 x 10 - s  
0.01596 x 165.3 

The values of R of this magnitude occurred only at 
three or four grid points. At the other grid points the 
values of R worked out to be still less, of the order 
of 10- s and still lower. Hence it was justifiable to neglect 
the second term on the right-hand side of eq. (1) in 
comparison with the first term. 
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APPENDIX A 

Effect of Neglecting the Heat Capacity of Fluid Within 
Regenerator Channels 
The equation of heat exchange between the wall surface 
element and the gas bulk is: 

Ot Ot 
hPAy(Tz - t) = VS N A y  + A t AyS -~f 

(TI - t )=  V Ot Ot ay + At 

o r  

(1) 

In the various examples worked out by the authors, 
the maximum value of Ot/Ox occurred at the gas exit for 

-- 0, whereas the value of Ot/Oy was almost constant. 
For the data of Table 1, Sr. No. 1 of this paper, the 
maximum value of Ot/Oz was @1917 K/s. At this point, 
the value of at/dy was 165.3 K/m. The ratio of second 

APPENDIX B 

Derivation of Heat Balance Equations (1) to (4) 
Referring to Fig. A.1, the heat balance equations for the 
matrix elements, at any height step j, are written as 
follows: 
(a) For the surface element, i = 1, 

(Y 2 -- Ti)  "t- h(t - T , ) A y  
Ay 

pcAxAy = K -~x 

or  

dTz K + _ ~ h  (t - Tz) (i) 
a t  = - r , )  p c A x  

Here the suffix on T refers to the position of the 
element in the x-direction. 

X ~  

Fig. A.l(a). 

(a) 

Regenerator channel 

j=n 

j -  1 m m-1 

L 

Fig. A.1(b). 

i[ 2 i 

i 
(b) 

Semithickness of wall (enlarged) divided into elements 
for writing heat balance equations 
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(b) For the inner elements, i = 2 to i -- m - 1, 

K x y KAy O T, - r ,  ) + ( T, _ - r ,  ) pcaxay  ~ = (~+ ' -~x  ' 

o r  

OTi K K 
o~ = pc(Ax) ~ (r,+, - ~) ~ pc(Ax) ~ (r,_, - ~) (~) 

(c) For the innermost element, having one surface 
adiabatic, i ffi m 

~Tm KAY (Tm_x_ T. ) pcAxAy = ~x  

o r  

OTto K (T=_, - T.,) (iii) 

The heat exchange between the surface element and the 
gas bulk in the channel cross-section at height j 
balances to t  

Ot Ot 
hPAy(Tt - t) = VS ~.. Ay + AfAyS F~ uy 

The second term in the above equation represents the 
rate of increase in the heat content of the hold up fluid. 
It is ignored, being small in comparison with the first 
term (Appendix A). Hence this equation reduces to 

~t  = h_ffP (T 1 _ t) (iv) 
gy VS 

The equations (i) to (iv) are transformed to non- 
dimensional form by making the following substi- 
tutions: 

X* -.~ x / a  

y* = y/L 

T - t;~ 
T • ~ ~  

t ;o  - tTo 

t *  = t - -  t i"  

t;. - tT. 

K 
pc 

T* ~ T/Tp 

ha 
B i  = m 

K 

O~Tp 
~ffi a- T 

hA 
A - ~  

VS 

t" In this equation the specific heat of  the fluid is taken on volumetric 
basis at NTP  conditions. As the air-handling equipments are 
usually rated on volume basis rather than on mass basis, the 
practice in industry is to rate the regenerators and furnaces on 
volume flow rates. Therefore the authors have thought it appropriate 
to use the volumetric specific heat of gases. 

In the above transformation, the reduced time f~ is 
equivalent to a Fourier number Fo, and the reduced 
length A may be interpreted as NTU. 

The resulting transformed equations are: 

OT~ = ~ (T~ T*) flBi ~T* ( ) - + ~ (t* - T*) 

OT* f~ T*) + ~ (T*_ l T*) 
= (Ax,)2 (T*+, - 

and 

(1) 

i = 2 , 3  . . . .  m - 1  (2) 

OT* f/ 
= T* & ,  ~ - ~  ( m-, - T*) (3) 

Ot* 
0y* = A(T* - t*) (4) 

APPENDIX C 

Two Integrating Schemes 
In a set of m elements, the heat-balance equation for the 
element i, exchanging heat with p elements, will be of  
the form: 

dT~ 
= R , . , / r , -  r,) i=1,2,...,m (1) 

where R,, i is the thermal conductance between the ele- 
ments i and q. It may be noted that Ri. i = 0. 

The Alternating Direction Approximation to eq. (1) is 
given by the following two sets of formulae (7): 

T/,k+ 1 

i 

q ffi l 
i 

1 + A¢ ~ Rq, i 
g = l  

P 
At y~ &,(T. .~-  T,..) 

4- qffii+l 
i 

1 + At ~ Re. ~ 
q = l  

at odd times, i increasing 

and 

T/,k+ 2 

i 
~.k÷, +At y R,,,(~,k+, - ~.,+x) 

q = l  
P 

1 + Az ~ Rq. i 
q = i + l  

4- 

P 
AT y. Ro. iT,.~÷~ 

qffii+! 

P 

1 + At ~ Rq, i 
qffii+l 

at even times, i decreasing. 
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The corresponding Dufort and Frankel Approxim- 
ation of eq. (1) is given by the following three-level 
formula (7): 

p 

T/,k_ 1 +A'~ Z Rq, i(2Tq, k - Ti.k-l) 
Yi, Jk+ 1 = t l=l 

P 

qffil 

In the above equations, the second suffix on T, that 
is, k, represents the stage of integration. 

APPENDIX D 

Heat Balance Checks for Convergence 
As a further check on cyclic equilibrium, heat balances 
have been made for some examples. As the heating 
period and the cooling period are equal in each 

example quoted in this paper, the rate of heat loss by 
waste gases in passing through the regenerator in the 
heating period should be equal to the rate of heat gain 
by air in passing through the regenerator in the cooling 
period. These are tabulated below: 

Rate of heat loss Rate of heat gain 
Example referred by waste gases, kW by air, kW 

2 in Table I 12.3692 12-4215 
3 in Table I 14.521 14.558 
4 in Table I 16.387 16.289 
5 in Table l 19.156 19.029 
8 in Table 1 18.977 18.941 
I in Table 2 10.016 I0.092 
2 in Table 2 13~41 13.041 
3 in Table 2 14.982 15-091 
6 in Table 2 15.205 15.181 
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